2020 CERTIFICATION

Consumer Confidence Report (CCR) PWS-ID #s for all Community Water Systems included in this The Federal Safe Drinking Water Act (SDWA) requires each Community Public Water System (PWS) to develop and distribute a Consumer Confidence Report (CCR) to its customers each year. Depending on the population served by the PWS, this CCR must be mailed or delivered to the customers, published in a newspaper of local circulation, or provided to the customers upon request. Make sure you follow the proper procedures when distributing the CCR. CCR DISTRIBUTION (Check all boxes that apply.) INDIRECT DELIVERY METHODS (Attach copy of publication, water bill or other) Advertisement in local paper (Attach copy of advertisement) □ On water bills (Attach copy of bill) □ Email message (Email the message to the address below) Other DIRECT DELIVERY METHOD (Attach copy of publication, water bill or other) DATE ISSUED □ Distributed via U. S. Postal Mail □ Distributed via E-Mail as a URL (Provide Direct URL): □ Distributed via E-Mail as an attachment □ Distributed via E-Mail as text within the body of email message 6-24-2021 □ Posted in public places (attach list of locations) □ Posted online at the following address (Provide Direct URL): CERTIFICATION I hereby certify that the CCR has been distributed to the customers of this public water system in the form and manner identified above and that I used distribution methods allowed by the SDWA. I further certify that the information included in this CCR is true and correct and is consistent with the water quality monitoring data provided to the PWS officials by the MSDH. Bureau of Public Water Supply SUBMISSION OPTIONS (Select one method ONLY) You must email, fax (not preferred), or mail a copy of the CCR and Certification to the MSDH. Mail: (U.S. Postal Service) Email: water.reports@msdh.ms.gov MSDH, Bureau of Public Water Supply P.O. Box 1700 Fax: (601) 576-7800 (NOT PREFERRED) Jackson, MS 39215

2020 Annual Drinking Water Quality Report McNair Stampley Waterworks PWS#: 0320003, 0320010 & 0320015 June 2021

κ. Ε

We're pleased to present to you this year's Annual Quality Water Report. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. Our water source is from wells drawing from the Catahoula Formation Aquifer.

The source water assessment has been completed for our public water system to determine the overall susceptibility of its drinking water supply to identified potential sources of contamination. A report containing detailed information on how the susceptibility determinations were made has been furnished to our public water system and is available for viewing upon request. The wells for the McNair Stampley Water Association have received lower to moderate susceptibility rankings to contamination.

If you have any questions about this report or concerning your water utility, please contact Jessie Hayden at 601.443.3446. We want our valued customers to be informed about their water utility. If you want to learn more, please attend any of our regularly scheduled meetings. They are held on the second Thursday of each month at 7:00 PM at the main office.

We routinely monitor for contaminants in your drinking water according to Federal and State laws. This table below lists all of the drinking water contaminants that we detected during the period of January 1st to December 31st, 2020. In cases where monitoring wasn't required in 2020, the table reflects the most recent results. As water travels over the surface of land or underground, it dissolves naturally occurring minerals and, in some cases, radioactive materials and can pick up substances or contaminants from the presence of animals or from human activity; microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm-water runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm-water runoff, and residential uses; organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations and septic systems; radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. All drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some contaminants. It's important to remember that the presence of these contaminants does not necessarily indicate that the water poses a health risk.

In this table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions:

Action Level - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level (MCL) - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) - The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL) – The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary to control microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG) – The level of a drinking water disinfectant below which there is no known or expected risk of health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10.000.000.

Level 1 Assessment: A study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Contominant	032000 Violation	Date	Level	TEST RES		MC	LG	MCI		Likely Source	e of Contamination				
Contaminant	Y/N	Collected	Detected	# of Samples Exceeding MCL/ACL	Measure -ment	IVIC	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	IVIOI		Likely Godio	o or containing son				
Microbiolo	gical Co	ontamin	ants												
1. Total Coliform Bacteria	Y	September October November	Monitoring	0	NA		0	pre	bacte	e of coliform eria in 5% of thly samples	Naturally present in the environment				
Inorganic (Contam	inants													
10. Barium	N	2019*	,1806	No Range	ppm		2		2	discharge fro	f drilling wastes; om metal refineries; atural deposits				
14. Copper	N	2015/17* .2 0 ppm			1.3	AL=	=1.3		stems; erosion of sits; leaching from						
16. Fluoride	N	2019*	.147	No Range	ppm		4		4	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories					
17. Lead	N	2015/17*	4	0	ppb		0	AL	=15		of household systems, erosion of				
Disinfection	n By-Pr	oducts			=,:										
Chlorine	N 2	2020 1	.3 1	– 1.8	ppm	0	MDR	RL = 4		ter additive us robes	sed to control				
Treatment	Techni	que	•		1										
TT Violation	Explana		Ouration of Violation	Corrective Actions		Не	alth Ef	fects L	angua	age					
Ground Water Rule	Failure t Address Deficien	1 8	1/15/19 – /14/2020	The system has occorrective actions longer in violation	and is no	ca vir su	using o uses, a	rganisi ind par iausea	ms. T asites	hese organis s, which can c	er may contain disease- e organisms include bacteria, hich can cause symptoms diarrhea, and associated				

^{*}Most recent sample. No sample required for 2019.

PWS ID #:	032001	U		TEST RESUL					
Contaminant	Violation Y/N	Date Collected	Level Detected	Range of Detects or # of Samples Exceeding MCL/ACL	Unit Measure -ment	MCLG	MCL	Likely Source	e of Contamination
Microbiolo 1. Total Coliform Bacteria	gical Co	ontamin:	ants Monitoring	0	NA	0	bact	ce of coliform teria in 5% of	Naturally present in the environmen
							mon	thly samples	
Inorganic (Contam	inants							
	-	ř	.0122	No Range	ppm	2	2	Discharge of	drilling wastes;
Inorganic (Contam	2019*	.0122	No Range	ppm	2	2	discharge fro	drilling wastes; om metal refineries atural deposits

14. Copper	N	2015/17*	.1		0		ppm	1	.3 AL	=1.3	plumbin natural o wood pr	on of household g systems; erosion of deposits; leaching from eservatives
16. Fluoride	N	2019*	₃ ,1	1	No Range		ppm		4	4	water ad strong to fertilizer	of natural deposits; dditive which promotes eeth; discharge from and aluminum factories
17. Lead	N	2015/17*	2		0		ppb		0 AL	.=15	plumbin	on of household g systems, erosion of deposits
Disinfection	By-P	roducts	3									
Chlorine	N	2020	1.4	1	– 1.91	ppm		0	MDRL = 4	1	ter additiv robes	ve used to control
Treatment '	Techni	ique										
TT Violation	Explana	ation	Durati Violat		Corrective Actions			Healt	h Effects L	angu	age	
Ground Water Rule	Failure Addres Deficie	s	11/15/ 8/14/2	/19–	The system has corrective action longer in violation	ns and i	s no	caus virus such	ing organis es, and par	ms. T asite:	hese org	y contain disease- anisms include bacteria, an cause symptoms hea, and associated
* Most recent samp	le. No sam	ple require	d for 2	020.								
PWS ID #:	032001	15			TEST RE	SUL	TS					
Contaminant	Violation Y/N	Date Collecte		Level etected	Range of Dete # of Sampl Exceeding MCL/ACL	es g	Unit Measure -ment	MCL	G MC	CL	Likely S	ource of Contamination
Microbiolog	gical C	Contam		ts onitoring	1 0		NA		0	pres	sence of	Naturally present in the
Bacteria										% of	bacteria monthly samples	environment
Inorganic C	Contan	ninants			h77							
10. Barium	N	2020		661	No Range		ppm		2	2	dischar	ge of drilling wastes; ge from metal refineries of natural deposits
13. Chromium	N	2020	1.	3	No Range		ppb	1	00	100	Dischar	ge from steel and pulp rosion of natural deposit
14. Copper	N	2019*	.1		0		ppm		1.3 AL	=1.3	Corrosi plumbir natural	on of household ng systems; erosion of deposits; leaching from reservatives
16. Fluoride	N	2020	.1	22	No Range		ppm		4	4	water a strong t fertilize	n of natural deposits; dditive which promotes teeth; discharge from r and aluminum factories
17. Lead	N	2019*	2		0		ppb		0 A	L=15	plumbir	on of household ng systems, erosion of deposits
Volatile Or	ganic (Contan	nina	nts								
76. Xylenes	N	2020	0.	00689	No Range		ppm		10	10	factorie	rge from petroleum es; discharge from eal factories
Disinfection	1 By-P	roducts	S						0			
81. HAA5	N	2019*	6	1	No Range	ppb		0	60		-Product infection.	of drinking water
82. TTHM [Total trihalomethanes]	N	2018*	1.02	1	No Range	ppb		0	80	Ву	_	of drinking water

Chlorine	LN	2020	1.5	1 – 1.84	ppm	0	MDRL = 4	Water additive used to control
CHIOTHE	IN	2020	1.0	1 1.01	PP			microbes
								microbes

^{*} Most recent sample. No sample required for 2020.

Microbiological Contaminants:

(1) Total Coliform/E Coli. Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system.

Disinfection By-Products: Chlorine. Some people who use water containing chlorine well in excess of the MRDL could experience irritating effects to their eyes and nose. Some people who drink water containing chlorine well in excess of the MRDL could experience stomach discomfort.

We are required to monitor your drinking water for specific contaminants on a monthly basis. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. On System # 320003 - during September, October and November 2020, we did not complete all monitoring or testing for bacteriological and Chlorine contaminants and therefore cannot be sure of the quality of our drinking water during that time. We were required to take 2 samples and took none in September and 1 in October and November. On Systems # 320010 & # 320015 during September we were required to take 1 sample and took none. We have since taken the required sample that showed we are meeting drinking water standards.

On systems #320003 & #320010 we have received a follow up/routine violation for the Lead and Copper Rule.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Our Water Association is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. The Mississippi State Department of Health Public Health Laboratory offers lead testing. Pease contact 601.576.7582 if you wish to have your water tested.

All sources of drinking water are subject to potential contamination by substances that are naturally occurring or man made. These substances can be microbes, inorganic or organic chemicals and radioactive substances. All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1.800.426.4791.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline 1.800.426.4791.

The McNair Stampley Waterworks works around the clock to provide top quality water to every tap. We ask that all our customers help us protect our water sources, which are the heart of our community, our way of life and our children's future.

2020 Annual Drinking Water Quality Report

McNair Stampley Waterworks

PWS#:0320003, 0320010 & 0320015

June 2021

potential sources of contamination. A report containing detailed information on how the scheduled meetings. They are held on the second Thursday of each month at 7:00 PM at curring minerals and, in some cases, radioactive materials and can pick up substances or water. We want you to understand the efforts we make to continually improve the water sults. As water travels over the surface of land or underground, it dissolves naturally ocday. Our constant goal is to provide you with a safe and dependable supply of drinking ing water. A prescribes regulations that limit the amount of certain contaminants quality of your water. Our water source is from wells drawing from the Catahoula Forsystem to determine the overall susceptibility of its drinking water supply to identified susceptibility determinations were made has been furnished to our public water system contaminants from the presence of animals or from human activity; microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic including synthetic and volatile organic chemicals, which are by-products of pocesses and petroleum production, and can also come from gas stations and in water gas production and mining activities. In order to ensure that tap water i is designed to inform you about the quality water and services we deliver to you every mation Aquifer. The source water assessment has been completed for our public water taminants. It public water systems. All drinking water, including bottled drinkcontact Jessie Hayden at 601.443.3446. We want our valued customers to be informed Association have received lower to moderate susceptibility rankings to contamination. the main office. We routinely monitor for contaminants in your drinking water accordtreatment process and protect our water resources. We are committed to ensuring the ing to Federal and State laws. This table below lists all of the drinking water contamisalts and metals, which can be naturally occurring or result from urban storm-water ming; pesticides and herbicides, which may come from a variety of sources such We're pleased to present to you this year's Annual Quality Water Report. This report about their water utility. If you want to learn more, please attend any of our regularly nants that we detected during the period of January 1-1 to December 3151 - 2020. In cases where monitoring wasn't required in 2020, the table reflects the most recent reand is available for viewing upon request. The wells for the McNair Stampley Water systems, agricultural livestock operations, and wildlife; inorganic contaminants, such off, industrial, or domestic wastewater discharges, oil and gas production, mining, s sal radioactive contaminants, which can be naturally occurring or be the If you have any questions about this report or concerning your water utility, please witure, urban storm-water runoff, and residential uses; organic chemical con-

				and is confirst			A STANDED FOR THE CORP. SHARE THE STANDERS OF			Dep Survey (10) promoter		Karley A		Destroys of stiffing scales, distingly from malk reference	Darhage for deal and out	Contactor of nountries planticity systems, except of refund dispositi, incling from	al Secule
		ある。		Water addition used to confind thousans		R.				Det Star		Principle of the Control of the Cont		Undergo of d	Darhage for	Compose of nousestide plumony lythems, ense refuter disposit, inter- acted meanwhiles	Erzion of refusi 6
		5 0 7 X		MDSL++ W		K STURE W				g				2	93,	AL-13	1
0				O NOS		*						-		-	8	2	7
ā	E	£	0.	- Gold			Deed Fig. 10		2			25		S	18	E.	1000
	No Range			1-101 pp		Conscious	The system top completed controlled acces, to controlled acces, to copy it wideling of this tale.		TEST RESULTS	14 Saryes 14 Saryes 17 Saryes 18 Saryes		•		No Kange	No Range		No Karge
	=	0		17		Dustened	TENSTR. BHODES	100		Discho		Martinety		189	13		100
1000	86 50	11912	of ores	200	201			Stranger S	100	Collected	Istantina	A STATE OF THE STA	Mants	2000	2020	20165	002
=	×	Z	RPh	2	Techni	Estleration	Ment Palent Pale	t No same	10000	Volutes	Name Co	3	MIRTH	Z	26	2	22
al de la company	10, Fluoring	17. Lead	Dankerion R. Projects	Chorins	Treasment Technique	Tivetigo	Sound Star Zue	Not result within No same republic 2020	PWS ID & GROOMS	Selbrane Selbrane	Vicrobiological Contaminants	L Total Coldon Sockma	Teorgania (outaminants	10. Birtusi	6		S. Florida

water addition which remeiled

known or expect of risk of health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$\mathbb{S}^0(0.000). Parts per billion (ppb) or Micrograms per liter - one part per billion corresponds to one minute in 2,000 years. or a single penny in \$10,000,000.

Level 1 Assessment: A study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

P.N.S. ID #; 0320king TEST RESULTS

Concentral Western Design Concentral Constitution Williams Williams Williams Tree Constitution The Concentral Constitution Tree Constituti

Microbiological Contaminants

Foundation Y September Mentang 9 NA 0 protects funds to the protect of a fact of the control bears (Namedon Namedon Na

Invigance Contaminants

0. Sarsm	N	2002	1800	J800 No Range	udd	~		2. Efterhapp of drifting hartes. decharge from most utiliseries, ordation of netwell decents.
Coper	×	Zetění	2		8	2	12 14-12	Constant of household planting system; expland naund exposits, exchegition wood preservatives
15 Puorde	×	2012	ž.	2019 347 No Fange	<u>§</u>	*		Entire stratuci lisposis with bottom affort promotes strate facts obtained from Welling and stratum facts of
7, Lond	×	201517			120	0	Alats	ALMS Company of tourseld partiting systems, erason of

Disinfection By-Products

Discrete fit 2006 13 1+18 spire in WRS. *4 Water spirals pared to control intended

Incoment Rechnique

T) Yellion		Dunion of Volision	Corrective	Huth Effect Largerge
Grout Meer Rule Falterin Address Colloserry	Fature to Address Collisionsy	MSTR- Bracks	The system has compleme controller bettom and is no broger in vigition of first rule.	National press see my oral debe- cianty openins. Nets exprime acted become whee, all pends, who can take ympom sub as seaso, press, darkes, polarcolate.

Mart recommende No sample required for 1839.

PWS ID #: 0220010 TEST RESULTS

Wost recent sample. No sample required for 2020.

Microbiological/ Contaminams:

(1) Yotal Coliform/E. Coli. Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other. Potentially harmful. Waterbome pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system.

Disinfection by -products:

bacteriological and Chlorine contaminants and therefore cannot be sure of the quality service lines and home plumbing. Our Water Association's responsible for providing lead. The Mississippi State Department of Health Public Health Laboratory offers lead available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/ health effects can be obtained by calling the Environmental Protection Agency's Safe testing. Pease contact 601 576.7582 if you wish to have your water tested. All sources could experience irritating effects to their eyes and nose. Some people who drink water monthly basis. Results of regular monitoring are an indicator of whether or not our violation for the Lead and Copper Rule. If present, elevated levels of lead can cause containing chlorine well in excess of the MRDL could experience stomach discomfort. disorders some elderly, and infants can be particularly at risk from infections. These Chlorine. Some people who use water containing chlorine well in excess of the MRDL Lead in drinking water is primarily from materials and components associated with Drinking Water Hotline at 1.800.426.4791. Some people may be more vulnerable to have undergone organ transplants, people with HIV/AIDS or other immune system cryptosporidium and other microbiological contaminants are available from the Safe We have since taken the required sample that showed we are meeting drinking water canminimize the potential for lead exposure by flushing yourtap for 30 seconds to organic chemicals and radioactive substances. All drinking water, including bottled contaminants in drinking water than the general population. Immuno-compromised people should seek advice about drinking water from their health care providers. 2 minutes before using water for drinking or cooking. If you are concerned about naturally occurring or man-made. These substances can be microbes, inorganic or in drinking water, testing methods, and steps you can take to minimize exposure is drinking water meets health standards. On System # 320003 - during September, Drinking Water Hotline 1800.426.4791. The McNair Stampley Waterworks the water poses a health risk. More information about contaminants and potential lead in your water, you may wish to have your water tested. Information on lead We are required to monitor your drinking water for specific contaminants on a standards. On systems #320003 & #320010 we have received a follow up/routine serious health problems, especially for pregnant women and young children. plumbing components. When your water has been sitting for several hours, you took none in September and 1 in October and November. On Systems # 320010 & # 320015 during September we were required to take 1 sample and took none. of our drinking water during that time. We were required to take 2 samples and of drinking water are subject to potential contamination by substances that are contaminants. The presence of contaminants does not necessarily indicate that October and November 2020, we did not complete all monitoring or testing for water, may reasonably be expected to contain at least small amounts of some high quality drinking water but cannot control the variety of materials used in persons such as persons with cancer undergoing chemotherapy, persons who EPNCDC guidelines on appropriate means to bessen the risk of infection by